Skip to content

Physical Chemistry II


Chapter 1 : Chemical and Electrochemical Equilibrium

Gibbs Energy Minimum

for rxn \(A \rightleftarrows B\), def. \(\xi\) as rxn extent(mol)

so \(-\dd n_A = \dd n_B = \dd \xi\),

\[ \dd G = \mu_A \dd n_A + \mu_B \dd n_B = (\mu_A-\mu_B)\dd\xi \]

for

\[ \Delta_rG = \frac{\dd G}{\dd \xi} = \mu_B - \mu_A = \mu_B^{\circ} - \mu_A^{\circ} + RT\ln{\frac{p_B}{p_A}} \]

def. rxn quotient \(Q = \frac{p_B}{p_A}\)

at Eq. \(0 = \Delta_rG = \Delta_rG^{\circ} + RT\ln{K}\)


General rxns

\[ \nu_A A + \nu_B B \rightleftarrows \nu_C C + \nu_D D \]

we get:

\[ \Delta_rG = \Delta_rG^{\circ} + RTlnQ = \Sigma_j \nu_j \Delta_fG^{\circ}(j) + RT\ln(\Pi_j a_j^{\nu_j}) \]

as \(a_j\) remains activity or fugacity

Pressure

Since \(\delta _rG^{\circ}\) is defined as a single pressure, we have \((\frac{\partial K}{\partial p})_T = 0\)

for rxn \(A \rightleftarrows 2B\), \(A\) changes from \(n\) to \((1-\beta)n\)

\[ x_A = \frac{(1-\beta)n}{(1-\beta)n + 2\beta n}, x_B = \frac{2\beta n}{(1-\beta)n + 2\beta n} \]

so we have:

\[ K = \frac{p_B^2}{p_A p^{\circ}} = \frac{x_B^2}{x_A} (\frac{p}{p^{\circ}}) = \frac{4\beta^2}{1-\beta^2}(\frac{p}{p^{\circ}})\\ \beta = \frac{1}{(1+4 p/Kp^{\circ})^{1/2}} \]

as \(p\) increase, \(\beta\) decrease


Response of equilibria to changes

as \(\ln{K} = -\frac{\Delta_rG^{\circ}}{RT} = -\frac{1}{R} (\frac{\partial \Delta_rG^{\circ}/T}{\partial T}) = \frac{\Delta_rH^{\circ}}{RT^2}\)

that is:

\[ \frac{\partial \ln{K}}{\partial {1/T}} = -\frac{\Delta_rH^{\circ}}{R} \]

that means: when \(\Delta_rH^{\circ} < 0\), when \(T\) decrease, \(K\) increase. -Vice Versa-

Equilibrium electrochemistry

for rxn \(\ce{H_2O <--> H_2 + O_2}\) we got half rxns:

Anode: \(\ce{H_2 - 2e^-<--> 2H^+}\)

Cathode: \(\ce{0.5O_2 + 2H^+ + 2e^- <--> H_2O}\)

for non-electrochemistry states:

\[ Q_1 = \frac{a(\ce{H^+})^2}{(p(\ce{H_2})/p^{\circ})}, Q_2 = \frac{a(\ce{H2O})}{(p(\ce{O_2})^{1/2}/p^{\circ})a(\ce{H^+})^2} \]

consider the Electromotive Force(EMF)

\[ \begin{aligned} -\nu EF = \Delta_rG &= \Delta_rG^{\circ} + RT\ln{Q} = \frac{\dd W_e}{\dd \xi}\\ E &= -\frac{\delta_rG_m^{\circ}}{\nu F} - \frac{RT}{\nu F} \ln{Q} \end{aligned} \]

this is called Nerst Equation.

At eq: \(0 = E^{\circ} - \frac{RT}{\nu F}\ln{K}\), so

\[ E^{\circ} = \frac{\nu FE^{\circ}}{RT} \]

Lattice gas

def. \(N\) as indistinguishable particles, \(N_0\) as indistinguishable sites

as Boltzman Entropy \(S = k_B \ln{\Omega}\), since \(\Omega = \frac{N_0!}{(N_0 - N)!(N)!}\)

let x = N/N_0, using Stiring Approximation:

\[ S = -k_BN(x\ln{x} + (1-x)\ln{1-x}) \]

for general cases:

\[ S = -k_BN(\Sigma_n x_i\ln{x_i}) \]

Electrochemical Potential

\[ G = H - TS + zeN\varphi \]
\[ \Delta G = \Delta H - T\Delta S + \Delta(zeN)\varphi \]

so as \(\mu = (\frac{\Delta G}{\Delta N})_{T,p,\varphi} = (\frac{\partial g}{\partial x})_{T, p, \varphi}\)

For a lattice as:

\[ S' = (\frac{\partial S}{\partial x})_{T,p,\varphi} = k_B \frac{x}{1-x} \]

so: $$ \mu = h' + k_BT\ln{\frac{x}{1-x}} + ze\varphi $$

when \(x \rightarrow 0\),

\[ \mu = h' + k_BT\ln{x} + ze\varphi = k_BT\ln{x} + ze\varphi \]

that is called Electrochemical Potential


Standard Hydrogen Potential

define Standard Hydrogen Potential as 0 V as the Standard Hydrogen Electrode:

\[ \ce{2H^+ + 2e^- -> H_2} \]

whereas happens Pt electrode and every species are at the standard state

eg: \(\ce{2H_2 + O_2 -> 2H_2O}\), \(E = 1.23\mathrm{V}\)

so \(\ce{0.5O_2 + 2H^+ + 2e^- <--> H_2O}\), \(E = 1.23 \mathrm{V}\)

eg2: \(\ce{AgCl + e <--> Ag + Cl^-}\)

\[ \begin{aligned} E &= E_{AgCl/Ag}^{\circ} - \frac{RT}{F} ln{a(\ce{Cl^-})} + \frac{RT}{F} ln{\frac{1}{a(\ce{H^+})}} \\ &= E_{AgCl/Ag}^{\circ} - \frac{RT}{F} \ln{a(\ce{Cl^-})a(\ce{H^+})}\\ &= E_{AgCl/Ag}^{\circ} - \frac{RT}{F} \ln{b(\ce{Cl^-})b(\ce{H^+})} -\frac{RT}{F} \ln{\gamma(\ce{Cl^-})\gamma(\ce{H^+})} \end{aligned} \]

where \(b\) stands molality, \(\gamma\) stands activity coefficient

as Debye-Huckle Formula \(\ln{\gamma} = cb^{1/2}\):

\[ E = E_{AgCl/Ag}^{\circ} - \frac{2RT}{F} \ln{b^2} +\frac{2RT}{F} cb^{1/2} \]

Reversible Hydrogen Electrode (RHE)

\[ E_{RHE}^{\circ} = E_{SHE} + \frac{RT}{F} \ln{a(\ce{H^+})}\\ V_{RHE}^{\circ} = V_{SHE} - \frac{RT}{F} \ln{a(\ce{H^+})} = V_{SHE} + 0.059\mathrm{pH} \]

Eg: Water Electrolysis

\[ V_{SHE} = E^{\circ} - \frac{RT}{4F}\ln{\frac{1}{(p(\ce{O_2}/p^{\circ}))a(\ce{H^+})^4}} = E^{\circ} + \frac{RT}{F} \ln{a(\ce{H^+})} + \frac{RT}{4F} \ln{p(\ce{O_2})/p^{\circ}} \]

where \(V_{RHE} = E^{\circ} + \frac{RT}{4F} \ln{p(\ce{O_2})/p^{\circ}}\)

In real case, if we want to drive the rxn, need let \(E > E^{\circ} = 1.23 \mathrm{V}\)


Chapter 2 : Fuel Cells, Batteries and Electric Double Layer

Determining TD functions

\[ \Delta_rG^{\circ} = \Delta_rH^{\circ} - T\Delta_rS^{\circ} = -\nu FE^{\circ}\\ \frac{\dd E^{\circ}}{\dd T} = \frac{\Delta_rS^{\circ}}{\nu F} \to \Delta_rS^{\circ} = \nu F\frac{\dd E^{\circ}}{\dd T}\\ \Delta_rH^{\circ} = \Delta_rG^{\circ} + T\Delta_rS^{\circ} = -\nu F(E^{\circ} - T\frac{\dd E^{\circ}}{\dd T}) \]

Energy Efficiency

\[ \text{Fuel Cell}(EE) = \frac{\text{Electrical }E}{\text{Chemical }E}\\ \text{Electrolyzer}(EE) = \frac{\text{Chemical }E}{\text{Electrical }E} \]

Screenshot_20250916_154624

Screenshot_20250916_154643


Charging Mode

  • Positive Electrode: supply e-(Sluggish) Anode
  • Negative Electrode: receive e-(Energetic) Cathode

Electric Double Layer(EDL)

Screenshot_20250916_160222

Gouy-Chapman-Stern(GCS) Model

Screenshot_20250916_162115


The Gibbs adsorption isotherm

Pure Phase(A) | …… | Pure Phase(B)

Ref:

\[ \dd G_R = (\frac{\partial G_R}{\partial T})\dd T + (\frac{\partial G_R}{\partial p}) \dd p +(\frac{\partial G_R}{\partial n})\dd n \]

Actual:

\[ \dd G_S = (\frac{\partial G_S}{\partial T})\dd T + (\frac{\partial G_S}{\partial p}) \dd p +(\frac{\partial G_S}{\partial n})\dd n + (\frac{\partial G_S}{\partial A})\dd A \]

we call \((\frac{\partial G_S}{\partial A})_{p,T,n} = \gamma\) as Surface Tension

As p&T are const., we have:

$$ \dd G^\sigma = \dd G_S - \dd G_R = \sum_i \mu_i(\dd n_i^S - \dd n_i^R) + \gamma \dd A= \sum_i \mu_i\dd n_i^\sigma + \gamma \dd A $$ for total differential:

\[ \dd G^\sigma = \sum_i \mu_i\dd n_i^\sigma + \sum_i n_i\dd \mu_i^\sigma + \gamma \dd A + A \dd\gamma \]

As Gibbs-Duham Relation :

$$ A\dd \gamma + \sum_i n_i^\sigma \dd \mu_i = 0 \ -\dd \gamma = \sum_i \frac{n_i^\sigma}{A} \dd\mu_i = \sum_i \Gamma_i \dd\mu_i $$ \(\Gamma\) is called Surface excess concertation(表面过剩浓度)


Electrocapillary Equation

Wire---Cu|Ag|AgCl(Ref)| K+, Cl-, M(ekectrolyte) |(WE)Hg|Ni|Cu---Wire

for Working Electrode :

$$ \begin{aligned} -\dd \gamma &= (\Gamma_{Hg}\dd\mu_{Hg} + \Gamma_{e}\dd\mu_{e})\ &+(\Gamma_{K}\dd\mu_{K} + \Gamma_{Cl}\dd\mu_{Cl})\ &+(\Gamma_{M}\dd\mu_{M} + \Gamma_{H_2O}\dd\mu_{H_2O}) \end{aligned} $$ 天书

\[ -\dd \gamma = \sigma_M \dd E + \Gamma_{K}(H_2O)\dd\mu_{KCl} + \Gamma_M(H_2O)\dd \mu_M =\sigma_M \dd E + C $$ that is : $$ \boxed{\sigma_M =-\frac{\dd \gamma}{\dd E}} \]

Droping Mercury Electrode


Adsorption Isotherm

\[ \begin{aligned} \mu_i^{Adsorption} &= \mu_i^{bulk}\\ \mu_i^{\circ A} + RT\ln a_i^{A} &= \mu_i^{\circ b} + RT\ln a_i^b\\ a_i^A &= a_i^be^{-\frac{\Delta G_i}{RT}} \end{aligned} \]

Assumptions:

  • All surface sites are identical
  • No lateral interactions
  • A full coverage can be achieved

def \(a_i = \frac{\Gamma_i}{\Gamma_s-\Gamma_i}\), \(\theta = \frac{\Gamma_i}{\Gamma_s}\)

that is: $$ \frac{\theta}{1-\theta} = a_ibe\ \theta_i = \frac{a_i}{RT}be{1+\sum_j^N a_j}{RT}}be $$ this is }{RT}}Langmuir Isotherm


Chapter 3 : Chemical Kinetics

Kinetic Theory of Gases KTG (Ideal Gases)

$$ p = (\frac{\partial U}{\partial V})_S \quad \text{Pressure is a measurement of energy density} $$ Assume one molecule in a \(abc\) box:

image-20250923161117996 $$ \Delta t = \frac{2a}{u_{1x}} $$ $$ F_1 = \frac{\Delta (mu_x)}{\Delta t} = \frac{mu_{1x}^2}{a} \ P_1 = \frac{F_1}{bc} = \frac{mu_{1x}^2}{V}\ P = \sum_i P_i = \frac mV \sum_i u_{ix}^2 $$

With symmetry \(\langle u_x^2 \rangle = \langle u_y^2 \rangle = \langle u_z^2 \rangle\)

\[ u^2 = u_x^2 + u_y^2 + u_z^2 \rightarrow \langle u^2 \rangle = \langle u_x^2 \rangle + \langle u_y^2 \rangle + \langle u_z^2 \rangle = 3\langle u_x^2 \rangle \\ PV = \frac 13 Nm\langle u^2 \rangle \\ \frac 12m\langle u^2 \rangle = \frac 32 \frac{PV}{N} = \frac 32 k_BT \\ \frac 13 M\langle u^2 \rangle = RT $$ that is : $$ \boxed{\sqrt{\langle u_x^2 \rangle} = \sqrt{\frac{3RT}{M}}} $$ let $h(u_x,u_y,u_z)$ be the fraction of molecules with velocity between $u_x + du_x,u_y + du_y, u_z + du_z$, as independent: $$ h(u_x,u_y,u_z) = f(u_x) + f(u_y) + f(u_z) \]
\[ f(u_x) = \sqrt{\frac{m}{2\pi RT}} e^{\frac{Mu_x^2}{2RT}}\\ h(u_x,u_y,u_z) = \left( \frac{m}{2\pi RT} \right)^\frac 32 e^{-M(u_x^2 + u_y^2 + u_z^2)/2RT} \]

as polar coordinate: $$ F(u)du = 4\pi \left( \frac{m}{2\pi RT} \right)^\frac 32 u^2 e{-mu2/2RT} du\ \boxed{ \langle u \rangle = 4\pi \left( \frac{m}{2\pi RT} \right)^\frac 32 \int u^3 e{-mu2/2RT} du = \sqrt{\frac{8RT}{\pi M}} }\ \langle u^2 \rangle = 4\pi \left( \frac{m}{2\pi RT} \right)^\frac 32 \int u^4 e{-mu2/2RT} du = \frac{3RT}{M} $$


Collision of gas

assume collision in \(dt\) in the oblique cylinder

image-20250923161327057


Mean Free Path

image-20250923162240436

molecules in the cylinder will be collided $$ dN_{coll} =\rho\pi d^2 \langle u \rangle dt \ Z_A = \frac{dN_{coll}}{dt} = \rho\pi d^2\sqrt{\frac{8RT}{\pi \mu}} = \rho\pi d^2\sqrt{\frac{16RT}{\pi m}} $$ (in dealing with two molecules relative motion)

\(Z_A\) is called collision frequency of one molecule $$ l = \langle u \rangle dt = \langle u \rangle / Z_A = \frac{1}{\sqrt{2}\rho \pi d^2} = \frac{RT}{\sqrt{2}N_AP \pi d^2} $$ \(l\) is called mean free path

the total collision frequency \(Z\) is:(the average angle is 90° so \(u_r = \sqrt{2}u\)) $$ Z_{AA} = \frac 12 \rho Z_A = \frac12 \pi d^2 \langle u_r \rangle \rho^2 = \frac{1}{\sqrt2} \pi d^2 \langle u \rangle \rho^2\ Z_{AB} = \sigma_{AB} \langle u_r \rangle \rho_A \rho_B = \pi\left( \frac{d_A + d_B}{2} \right)^2 ·\sqrt{\frac{8RT}{\pi \mu}}·\rho_A \rho_B $$ Collision theory: \(r \propto Z_{AB}\) and rxn only happen when \(u_r > u_0\)


Phenomenological Kinetics

\[ \ce{\nu_AA + \nu_BB -> \nu_YY + \nu_ZZ} \]
\[ r = \frac{d\xi}{dt} = -\frac{1}{\nu_A}\frac{dn_A}{dt} = \frac{1}{\nu_Y}\frac{dn_Y}{dt} \\ r = k[\ce{A}]^{m_A}[\ce{B}]^{m_B} \\ \ln r = \ln k + m_A\ln{[\ce{A}]} + m_B\ln{[\ce{B}]} \\ \]

first/second order reactions ....

Transition State Theory:

  • Reactant are in eq. with the activated complex(AC) or transition state
  • AC converts to product in a irreversible step
\[ \ce{A + B <=> [AB]^\ddagger -> P} \\ K_c^\ddagger =\frac{[AB^\ddagger]c^{\circ}}{[A][B]} \]

at eq \(\mu_A + \mu_B = \mu_{AB^\ddagger}\)

from statistical mechanics:

\[ \mu = -RT(\frac{\partial \ln Q}{\partial N})_{VT} = -RT(\frac{\partial \ln {\frac{q^N}{N!}}}{\partial N})_{VT} = -RT\ln{q/N} \\ \mu^\ddagger = \mu_A + \mu_B \rightarrow \frac{q^\ddagger}{N^\ddagger} = \frac{q_A}{N_A} \frac{q_ B}{N_B}\\ \frac{N^\ddagger}{N_AN_B} = \frac{q^\ddagger}{q_Aq_B} \\ K_c^\ddagger = \frac{\frac{q^\ddagger}{V}·c_0}{\frac{q_A}{V}\frac{q_B}{V}} = \exp(-\frac{\Delta^\ddagger G ^\circ}{RT}) \]

let \(\nu_c\) be the freq. at which AC cross over the barrier

\[ \frac{d[P]}{dt} = \nu_c[AB^\ddagger] = k[A][B] \\ k = \nu_c K_c^\ddagger /c^\circ \]

Chapter 4: Chemical Kinetics (II)

Potential Energy Surface

image-20250930153118930

the top point of the surface is called Saddle Point

at local minimum:

\[ \frac{\partial^2u}{\partial x^2} > 0, k>0, \nu = \sqrt{\frac{\mu}{k}} \text{ is real} \]

at local maximum:

\[ \frac{\partial^2u}{\partial x^2} < 0, k<0, \nu = \sqrt{\frac{\mu}{k}} \text{ is imaginary} \]

KIE

Primary KIE

Zero Point Energy: \(E_0 = \frac 12 h\nu\) for ground state

Harmonic Approx.: \(\displaystyle{\nu = \frac 1{2\pi}\sqrt{\frac k\mu}}\)

\[ \frac {\nu_{CH}}{\nu_{CD}} = \sqrt{\frac{m_Dm_C(m_D+m_C)}{m_Hm_C(m_H+m_C)}} \approx \sqrt2 \]

image-20250930154307649

\[ \begin{aligned} \ln(\frac{k'_{CH}}{k'_{CD}}) &= \ln{\frac {A_H}{A_D}} + \frac12 \frac{h(\nu_H-\nu_D)}{k_BT}\\ \frac{k'_{CH}}{k'_{CD}} &= \exp({\frac12 \frac{h(\nu_H-\nu_D)}{k_BT}}) \approx 1-10 \end{aligned} \]

Secondary KIE

image-20250930155034421

KIE: \(S_N1\) ~ 1.2, \(S_N2\) ~ 1. why?

\(S_N1\) mechanism involves a temporary increase in the bond order of C-H(D)

Early vs. Late TS

image-20250930155358406

Postulates based on TST

Bronsted-Evans-Polanyi principle (BEP)

for a series of similar reactions: $$ \Delta G_1^\ddagger - \Delta G_2^\ddagger = \alpha(\Delta G_1-\Delta G_2) $$ or $$ \ln(k_2/k_1) = \alpha\ln(K_2-K_1) $$ where \(0<\alpha<1\)

The Hammond Postulate

image-20250930161619872

more reactive rxn will produce AC more resembles the reactant, result in less selectivity (Activity-Selectivity Principle)

The Curtin-Hammett Principle

image-20250930161911577

The ratio of products is determined by the relative heights of the highest energy barriers, leading to different products

Microscopic Reversibility

image-20250930162025756

The forward and reverse rxns go identical path

Kinetic vs Thermodynamic Control

image-20250930162821962

Quasi Steady Approx. (QSSA)

Key assumptions:

  • Concentrations of intermediates are low (why)

  • Variations of concentrations of intermediates with time are negligible.

consider rxn: $$ \ce{A ->[k_1] B ->[k_2] C} $$ we have: $$ \begin{gathered} \frac{dx}{dt} = k_1x \quad \frac{dy}{dt} = k_1x-k_2y \quad \frac{dz}{dt} = k_2y \ \Rightarrow y = \frac{k_1}{k_2 - k_1}(e^{-k_1t} - e^{-k_2t}) \ \frac{dy}{dt} = 0 \Rightarrow t_{max} = \frac 1{k_2-k_1}\ln{\frac {k_2}{k_1}} \ y_{max} = \frac {k_1}{k_2-k_1}[(\frac {k_2}{k_1})^{\frac {k_1}{k_2-k_1}} - (\frac {k_2}{k_1})^{\frac {k_2}{k_2-k_1}}] \end{gathered} $$ as \(k_2 \gg k_1 \Rightarrow t_{max} \to 0, y_{max} \to 0\)

QSSA

for rxns with more than one intermediates: $$ \ce{A->[k_1]I_1 ->[k_2]I_2->...->I_n->[k_{n+1}]B} $$ all \(\ce{I_n}\) can consider into one steady state.

Pseudo-Equilibrium/ Rate limiting step

If one step has a significantly lower rate constant, then it is considered as RLS

Several steps in a row sequence could have low but comparable rate constants ⇒ kinetically relevant not RLS/RDS.

Surface Mediate rxns

Comments