Skip to content

Physical Chemistry II 物理化学 II 笔记

5633 个字 5 行代码 34 张图片 预计阅读时间 19 分钟


注意

此页面为物理化学 II 英文班的笔记,因此较为粗略。详细内容我之后会单开页面重新编写。

Chapter 1 : Chemical and Electrochemical Equilibrium

Gibbs Energy Minimum

for rxn \(A \rightleftarrows B\), def. \(\xi\) as rxn extent(mol)

so \(-\dd n_A = \dd n_B = \dd \xi\),

\[ \dd G = \mu_A \dd n_A + \mu_B \dd n_B = (\mu_A-\mu_B)\dd\xi \]

for

\[ \Delta_rG = \dv{G}{\xi} = \mu_B - \mu_A = \mu_B^{\circ} - \mu_A^{\circ} + RT\ln{\frac{p_B}{p_A}} \]

def. rxn quotient \(Q = \frac{p_B}{p_A}\)

at Eq. \(0 = \Delta_rG = \Delta_rG^{\circ} + RT\ln{K}\)


General rxns

\[ \nu_A A + \nu_B B \rightleftarrows \nu_C C + \nu_D D \]

we get:

\[ \Delta_rG = \Delta_rG^{\circ} + RTlnQ = \sum_j \nu_j \Delta_fG^{\circ}(j) + RT\ln(\prod_j a_j^{\nu_j}) \]

as \(a_j\) remains activity or fugacity

Since \(\delta _rG^{\circ}\) is defined as a single pressure, we have \((\frac{\partial K}{\partial p})_T = 0\)

for rxn \(A \rightleftarrows 2B\), \(A\) changes from \(n\) to \((1-\beta)n\)

\[ x_A = \frac{(1-\beta)n}{(1-\beta)n + 2\beta n}, x_B = \frac{2\beta n}{(1-\beta)n + 2\beta n} \]

so we have:

\[ \begin{gathered} K = \frac{p_B^2}{p_A p^{\circ}} = \frac{x_B^2}{x_A} (\frac{p}{p^{\circ}}) = \frac{4\beta^2}{1-\beta^2}(\frac{p}{p^{\circ}}) \\ \beta = \frac{1}{(1+4 p/Kp^{\circ})^{1/2}} \end{gathered} \]

as \(p\) increase, \(\beta\) decrease.


Response of equilibria to changes

as

\[ \ln{K} = -\frac{\Delta_rG^{\circ}}{RT} = -\frac{1}{R} (\frac{\partial \Delta_rG^{\circ}/T}{\partial T}) = \frac{\Delta_rH^{\circ}}{RT^2} \]

that is:

\[ \frac{\partial \ln{K}}{\partial {1/T}} = -\frac{\Delta_rH^{\circ}}{R} \]

that means: when \(\Delta_rH^{\circ} < 0\), when \(T\) decrease, \(K\) increase. Vice Versa


Equilibrium electrochemistry

for rxn \(\ce{H_2O <--> H_2 + O_2}\) we got half rxns:

Anode: \(\ce{H_2 - 2e^-<--> 2H^+}\)

Cathode: \(\ce{0.5O_2 + 2H^+ + 2e^- <--> H_2O}\)

for non-electrochemistry states:

\[ Q_1 = \frac{a(\ce{H^+})^2}{(p(\ce{H_2})/p^{\circ})}, Q_2 = \frac{a(\ce{H2O})}{(p(\ce{O_2})^{1/2}/p^{\circ})a(\ce{H^+})^2} \]

consider the Electromotive Force(EMF)

\[ \begin{aligned} -\nu EF = \Delta_rG &= \Delta_rG^{\circ} + RT\ln{Q} = \dv{W_e}{\xi}\\ E &= -\frac{\Delta_rG_m^{\circ}}{\nu F} - \frac{RT}{\nu F} \ln{Q} \end{aligned} \]

this is called Nerst Equation.

At eq: \(0 = E^{\circ} - \frac{RT}{\nu F}\ln{K}\), so

\[ \ln K = \frac{\nu FE^{\circ}}{RT} \]

Lattice gas

def. \(N\) as indistinguishable particles, \(N_0\) as indistinguishable sites

as Boltzman Entropy \(S = k_B \ln{\Omega}\), since \(\displaystyle \Omega = \frac{N_0!}{(N_0 - N)!(N)!}\)

let \(x = N/N_0\), using Stiring Approximation:

\[ S = -k_BN(x\ln{x} + (1-x)\ln{1-x}) \]

for general cases:

\[ S = -k_BN(\Sigma_n x_i\ln{x_i}) \]

Electrochemical Potential

\[ G = H - TS + zeN\varphi \]
\[ \Delta G = \Delta H - T\Delta S + \Delta(zeN)\varphi \]

so as \(\displaystyle \mu = (\frac{\Delta G}{\Delta N})_{T,p,\varphi} = (\frac{\partial g}{\partial x})_{T, p, \varphi}\), def \(g = G/N, h = H/N, S = S/N\)

For a lattice as:

\[ S' = (\frac{\partial S}{\partial x})_{T,p,\varphi} = k_B \frac{x}{1-x} \]

so:

\[ \mu = h' + k_BT\ln{\frac{x}{1-x}} + ze\varphi \]

in solution, when \(x \rightarrow 0\),

\[ \mu = \underline{h' + k_BT\ln{x}} + ze\varphi = k_BT\ln{\gamma x} + ze\varphi \]

that is called Electrochemical Potential


Standard Hydrogen Potential

define Standard Hydrogen Potential as 0 V as the Standard Hydrogen Electrode:

\[ \ce{2H^+ + 2e^- -> H_2} \quad E^\circ = \pu{0V} \]

whereas happens Pt electrode and every species are at the standard state ( 形成铂黑结构增加催化位点,促进反应快速达到平衡。)

eg: \(\ce{2H_2 + O_2 -> 2H_2O}\), \(E = \pu{1.23V}\)

so \(\ce{0.5O_2 + 2H^+ + 2e^- <--> H_2O}\), \(E = \pu{1.23V}\)

eg2: \(\ce{AgCl + e <--> Ag + Cl^-}\)

\[ \begin{aligned} E &= E_{AgCl/Ag}^{\circ} - \frac{RT}{F} ln{a(\ce{Cl^-})} + \frac{RT}{F} ln{\frac{1}{a(\ce{H^+})}} \\ &= E_{AgCl/Ag}^{\circ} - \frac{RT}{F} \ln{a(\ce{Cl^-})a(\ce{H^+})}\\ &= E_{AgCl/Ag}^{\circ} - \frac{RT}{F} \ln{b(\ce{Cl^-})b(\ce{H^+})} -\frac{RT}{F} \ln{\gamma(\ce{Cl^-})\gamma(\ce{H^+})} \end{aligned} \]

where \(b\) stands molality( 质量摩尔浓度 ), \(\gamma\) stands activity coefficient

as Debye-Huckle Formula \(\ln{\gamma} = cb^{1/2}\):

\[ E = E_{AgCl/Ag}^{\circ} - \frac{2RT}{F} \ln{b} +\frac{2RT}{F} cb^{1/2} \]

Reversible Hydrogen Electrode (RHE)

\[ E_{RHE}^{\circ} = E_{SHE} + \frac{RT}{F} \ln{a(\ce{H^+})}\\ V_{RHE}^{\circ} = V_{SHE} - \frac{RT}{F} \ln{a(\ce{H^+})} = V_{SHE} + 0.059\mathrm{pH} \]

Eg: Water Electrolysis

\[ \begin{aligned} V_{SHE} &= E^{\circ} - \frac{RT}{4F}\ln{\frac{1}{(p(\ce{O_2}/p^{\circ}))a(\ce{H^+})^4}} \\ &= E^{\circ} + \frac{RT}{F} \ln{a(\ce{H^+})} + \frac{RT}{4F} \ln{p(\ce{O_2})/p^{\circ}} \end{aligned} \]

where \(\displaystyle V_{RHE} = E^{\circ} + \frac{RT}{4F} \ln(p(\ce{O_2})/p^{\circ})\)

In real case, if we want to drive the rxn, need let \(E > E^{\circ} = 1.23 \mathrm{V}\)


Chapter 2 : Fuel Cells, Batteries and Electric Double Layer

Determining TD functions

\[ \begin{gathered} \Delta_rG^{\circ} = \Delta_rH^{\circ} - T\Delta_rS^{\circ} = -\nu FE^{\circ}\\ \frac{\dd E^{\circ}}{\dd T} = \frac{\Delta_rS^{\circ}}{\nu F} \to \Delta_rS^{\circ} = \nu F\dv{E^{\circ}}{T}\\ \Delta_rH^{\circ} = \Delta_rG^{\circ} + T\Delta_rS^{\circ} = -\nu F(E^{\circ} - T\dv{ E^{\circ}}{T}) \end{gathered} \]

Energy Efficiency

\[ \begin{gathered} \text{Fuel Cell}(EE) = \frac{\text{Electrical }E}{\text{Chemical }E}\\ \text{Electrolyzer}(EE) = \frac{\text{Chemical }E}{\text{Electrical }E} \end{gathered} \]

Screenshot_20250916_154624

MEA: 膜电极组件

undefined

undefined


Rechargable batteries

image-20251103153747563


Charging Mode

  • Positive Electrode: supply e-(Sluggish) Anode
  • Negative Electrode: receive e-(Energetic) Cathode

Electric Double Layer(EDL)

Screenshot_20250916_160222


Gouy-Chapman-Stern(GCS) Model

Screenshot_20250916_162115

undefined

image-20251103161248999


The Gibbs adsorption isotherm

Pure Phase(A) | …… | Pure Phase(B)

undefined

Reference System: (省略了偏摩尔量)

\[ \dd G_R = (\frac{\partial G_R}{\partial T})\dd T + (\frac{\partial G_R}{\partial p}) \dd p +(\frac{\partial G_R}{\partial n})\dd n \]

Actual system:

\[ \dd G_S = (\frac{\partial G_S}{\partial T})\dd T + (\frac{\partial G_S}{\partial p}) \dd p +(\frac{\partial G_S}{\partial n})\dd n + (\frac{\partial G_S}{\partial A})\dd A \]

where \(A\) indicates interfacial area, we call \(\displaystyle(\frac{\partial G_S}{\partial A})_{p,T,n} = \gamma\) as Surface Tension

As p&T are const., 认为所有物质均为纯态,即 \(\mu_i^R = \mu_i^S\),we have:

\[ \dd G^\sigma = \dd G_S - \dd G_R = \sum_i \mu_i(\dd n_i^S - \dd n_i^R) + \gamma \dd A= \sum_i \mu_i\dd n_i^\sigma + \gamma \dd A \]

\(n_i^\sigma\) is difference.

for total differential:

\[ \dd G^\sigma = \sum_i \mu_i\dd n_i^\sigma + \sum_i n_i\dd \mu_i^\sigma + \gamma \dd A + A \dd\gamma \]

that is Gibbs-Duham Relation :

\[ \begin{gathered} A\dd \gamma + \sum_i n_i^\sigma \dd \mu_i = 0 \\ -\dd \gamma = \sum_i \frac{n_i^\sigma}{A} \dd\mu_i = \sum_i \Gamma_i \dd\mu_i \end{gathered} \]

\(\Gamma\) is called Surface excess concertation( 表面过剩浓度 )

上文所说的实际上是,相对表面过剩浓度 \(\Gamma_i^1\),即认为组分 1 的表面过剩为零的平面为划分面,其不依赖于选取的分界面的位置 :

\[ \Gamma^1_1 = 0, \quad \Gamma_i^1 = \Gamma_i - \Gamma_1 (\frac{C_i^\alpha - C_i^\beta}{C_1^\alpha - C_1^\beta}) = \Gamma_i - \Gamma_1 \frac{C_i^\sigma}{C_1^\sigma} \]

we have:

\[ \begin{gathered} \dd\mu_i = RT\dd \ln fC_i \\ \Gamma_i = -\frac{1}{RT}(\frac{\partial \gamma}{\partial \ln fC_i})_{T,p} \end{gathered} \]

Electrocapillary Equation

\[ \ce{Wire---Cu'|Ag|AgCl(Ref)| K+, Cl-, M(electrolyte) |(WE)Hg|Ni|Cu---Wire} \]

for Working Electrode :

\[ \begin{aligned} -\dd \gamma &= (\Gamma_{Hg}\dd\mu_{Hg} + \Gamma_{e}\dd\mu_{e,Hg})\\ &+(\Gamma_{K+}\dd\mu_{K+} + \Gamma_{Cl-}\dd\mu_{Cl-})\\ &+(\Gamma_{M}\dd\mu_{M} + \Gamma_{H_2O}\dd\mu_{H_2O}) \end{aligned} \]

we have:

\[ \begin{cases} (\Gamma_{Hg}\dd\mu_{Hg} + \Gamma_{e}\dd\mu_{e,Hg}) = \Gamma_{e}\dd\mu_{e}^{Cu} \\ \dd \mu_{K+} + \dd \mu_{Cl-} = \dd \mu_{KCl} \end{cases} \]

for Ref Electrode :

\[ \ce{AgCl + e <--> Ag + Cl-} \]
\[ \mu_{\ce{AgCl}} + \mu_{e}^{Cu'} = \mu_{\ce{Ag}} + \mu_{\ce{Cl-}} \]

做全微分:

\[ \dd \mu_{e}^{Cu} = \dd \mu_{\ce{Cl-}} \]

代入原方程:

\[ \begin{aligned} -\dd \gamma &= \Gamma_{e}\dd \mu_{e}^{Cu} -(\Gamma_{K+} - \Gamma_{Cl-})\dd \mu_{e}^{Cu'} \\ & +\Gamma_{K+}\dd\mu_{KCl} +(\Gamma_{M}\dd\mu_{M} + \Gamma_{H_2O}\dd\mu_{H_2O}) \end{aligned} \]

where \(\sigma_M = -F\Gamma_e\), \(\sigma_S = -F(\Gamma_{K+} - \Gamma_{Cl-})\) stand for excess charge on WE and EDL

由于电中性:

\[ \sigma_M + \sigma_S = 0 \]

于是:

\[ \begin{aligned} -\dd \gamma &= -\sigma_M \frac{\dd \mu_{e}^{Cu}}{F} + \sigma_M \frac{\dd \mu_{e}^{Cu'}}{F} \\ & +\Gamma_{K+}\dd\mu_{KCl} +(\Gamma_{M}\dd\mu_{M} + \Gamma_{H_2O}\dd\mu_{H_2O}) \\ &= \sigma_M \dd E +\Gamma_{K+}\dd\mu_{KCl} + \Gamma_{M}\dd\mu_{M} + \Gamma_{H_2O}\dd\mu_{H_2O} \end{aligned} \]

G-D 方程:

\[ \dd \mu_{\ce{H2O}} = - \frac{x_{KCl}}{x_{H2O}} \dd \mu_{KCl} - \frac{x_{M}}{x_{H2O}} \dd \mu_{M} \]

代入:

\[ \begin{aligned} -\dd \gamma &= \sigma_M \dd E + (\Gamma_{K+} - \frac{x_{KCl}}{x_{H2O}})\dd\mu_{KCl} + (\Gamma_{M} - \frac{x_{M}}{x_{H2O}})\dd \mu_M\\ &= \sigma_M \dd E + \Gamma_{K}(H_2O)\dd\mu_{KCl} + \Gamma_M(H_2O)\dd \mu_M \\ &=\sigma_M \dd E + C \end{aligned} \]

that is Lippmann's equation:

\[ \boxed{\sigma_M =-\frac{\dd \gamma}{\dd E}} \]

Droping Mercury Electrode

image-20251103201920498

image-20251103202301647

当且仅当导数为 0 时达到双电层净电荷平衡,前半段表面富集电子,排斥阴离子而吸引阳离子;后半段表面缺少电子,吸引阴离子。

image-20251103202855441


Adsorption Isotherm

\[ \begin{aligned} \mu_i^{Adsorption} &= \mu_i^{bulk}\\ \mu_i^{\circ A} + RT\ln a_i^{A} &= \mu_i^{\circ b} + RT\ln a_i^b\\ a_i^A &= a_i^be^{-\frac{\Delta G^\circ_i}{RT}} \end{aligned} \]

Assumptions:

  • All surface sites are identical
  • No lateral interactions
  • A full coverage can be achieved

def \(a_i^A = \frac{\Gamma_i}{\Gamma_s-\Gamma_i}\), \(\theta_i = \frac{\Gamma_i}{\Gamma_s}\)

that is:

\[ \begin{gathered} \frac{\theta_i}{1-\sum\theta_i} = a_i^be^{-\frac{\Delta G_i}{RT}}\\ \theta_i = \frac{a_i^be^{-\frac{\Delta G_i}{RT}}}{1+\sum_j^N a_j^be^{-\frac{\Delta G_i}{RT}}} = \frac{a_i^b K_i}{1+\sum_j^N a_j^b K_j} \end{gathered} \]

this is Langmuir Isotherm

Including interaction among adsorbates: Frumkin isotherm

\[ a_i^be^{-\frac{\Delta G_i}{RT}} = \frac{\theta_i}{1-\sum\theta_i} \exp (-\frac{2g\Gamma_i}{RT}) \]

其中 \(-2g\Gamma_i\) 代表相互作用项。

Chapter 3 : Chemical Kinetics

Kinetic Theory of Gases KTG (Ideal Gases)

\[ p = (\frac{\partial U}{\partial V})_S \quad \text{Pressure is a measurement of energy density} \]

Assume one molecule in a \(abc\) box:

image-20250923161117996

每次撞击动量改变为 \(2mu\),间隔时间为:

\[ \Delta t = \frac{2a}{u_{1x}} \]
\[ \begin{gathered} F_1 = \frac{\Delta (mu_x)}{\Delta t} = \frac{mu_{1x}^2}{a} \\ P_1 = \frac{F_1}{bc} = \frac{mu_{1x}^2}{V}\\ P = \sum_i P_i = \frac mV \sum_i u_{ix}^2 \end{gathered} \]

With symmetry \(\langle u_x^2 \rangle = \langle u_y^2 \rangle = \langle u_z^2 \rangle\)

\[ \begin{gathered} u^2 = u_x^2 + u_y^2 + u_z^2 \rightarrow \langle u^2 \rangle = \langle u_x^2 \rangle + \langle u_y^2 \rangle + \langle u_z^2 \rangle = 3\langle u_x^2 \rangle \\ PV = \frac 13 Nm\langle u^2 \rangle \\ \frac 12m\langle u^2 \rangle = \frac 32 \frac{PV}{N} = \frac 32 k_BT \\ \frac 13 M\langle u^2 \rangle = RT \end{gathered} \]

that is :

\[ \boxed{\sqrt{\langle u_x^2 \rangle} = \sqrt{\frac{3RT}{M}}} \]

let \(h(u_x,u_y,u_z)\) be the fraction of molecules with velocity between \(u_x + du_x,u_y + du_y, u_z + du_z\), as independent:

\[ h(u_x,u_y,u_z) = f(u_x) + f(u_y) + f(u_z) \]

之后利用 Boltzman 公式,然后归一化概率密度函数:

\[ \begin{gathered} f(u_x) = \sqrt{\frac{M}{2\pi RT}} e^{\frac{Mu_x^2}{2RT}}\\ h(u_x,u_y,u_z) = \left( \frac{M}{2\pi RT} \right)^\frac 32 e^{-M(u_x^2 + u_y^2 + u_z^2)/2RT} \end{gathered} \]

as polar coordinate,转化为球坐标(即在薄球壳内认为 \(\times 4\pi u^2\)):

\[ \begin{gathered} F(u)du = 4\pi \left( \frac{M}{2\pi RT} \right)^\frac 32 u^2 e^{-Mu^2/2RT} du\\ \boxed{ \langle u \rangle = 4\pi \left( \frac{M}{2\pi RT} \right)^\frac 32 \int u^3 e^{-Mu^2/2RT} du = \sqrt{\frac{8RT}{\pi M}} }\\ \langle u^2 \rangle = 4\pi \left( \frac{M}{2\pi RT} \right)^\frac 32 \int u^4 e^{-Mu^2/2RT} du = \frac{3RT}{M} \end{gathered} \]

求导可得最概然速率:

\[ u_p = \sqrt{\frac{2RT}{M}} \]

Collision of gas

assume collision in \(dt\) in the oblique cylinder,考虑能撞上面积 A 的分子数:

image-20250923161327057

柱形内碰撞分子数等于 \(柱内分子数 \times 速度概率 \times 方向概率\)

\[ \begin{aligned} \dd N_{coll} &= \rho(Audt)\cos\theta \cdot F(u)du \cdot \frac{\sin\theta \dd\theta \dd\varphi}{4\pi} \\ \dd \xi_{coll} = \frac{\dd N_{coll}}{A \dd t} &= \rho u F(u)du \frac{\sin\theta\cos\theta \dd\theta \dd\varphi}{4\pi} \\ \xi_{coll} &= \frac{\rho}{4} \left< u \right> \end{aligned} \]

其中 \(\xi_{coll}\) 代表碰撞频率,即单位面积单位时间的碰撞次数。


Mean Free Path

image-20250923162240436

molecules in the cylinder will be collided

\[ \begin{gathered} dN_{coll} =\rho\pi d^2 \langle u_r \rangle dt \\ Z_A = \frac{dN_{coll}}{dt} = \rho\pi d^2\sqrt{\frac{8RT}{\pi \mu}} = \rho\pi d^2\sqrt{\frac{16RT}{\pi m}} \end{gathered} \]

(in dealing with two molecules relative motion)

\(Z_A\) is called collision frequency of one molecule

\[ l = \langle u \rangle dt = \langle u \rangle / Z_A = \frac{1}{\sqrt{2}\rho \pi d^2} = \frac{RT}{\sqrt{2}N_AP \pi d^2} \]

\(l\) is called mean free path

the total collision frequency \(Z\) is:(the average angle is 90° so \(u_r = \sqrt{2}u\)

\[ \begin{gathered} Z_{AA} = \frac 12 \rho Z_A = \frac12 \pi d^2 \langle u_r \rangle \rho^2 = \frac{1}{\sqrt2} \pi d^2 \langle u \rangle \rho^2\\ Z_{AB} = \sigma_{AB} \langle u_r \rangle \rho_A \rho_B = \pi\left( \frac{d_A + d_B}{2} \right)^2 ·\sqrt{\frac{8RT}{\pi \mu}}·\rho_A \rho_B \end{gathered} \]

Collision theory: \(r \propto Z_{AB}\) and rxn only happen when \(u_r > u_0\)

\[ \begin{gathered} \dd Z_{AB} \propto u_rF(u_r) = u_r^3 \exp(-\frac{\mu u_r^2}{2k_BT}) \dd u_r = Au_rF(u_r) \\ Z_{AB} = A\int_0^\infty u_rF(u_r) \to A = \sigma_{AB}\rho_A\rho_B(\frac{\mu}{k_BT})^\frac32(\frac2\pi)^\frac12 \end{gathered} \]

let \(\epsilon_r = \frac12 \mu u_r^2\) :

\[ \begin{aligned} r = \int_{\epsilon_c}^\infty dz_{AB} &= \sigma_{AB}\rho_A\rho_B (\frac{1}{k_BT})^\frac32(\frac8{\pi\mu})^\frac12 \epsilon_r \exp(-\frac{\epsilon_r}{k_BT}) d\epsilon_r \\ &= \sigma_{AB}\rho_A\rho_B(\frac{8k_BT}{\pi\mu})^\frac12(1+\frac{\epsilon_C}{k_BT})\epsilon_r \exp(-\frac{\epsilon_r}{k_BT}) \\ &= A\exp(-\frac{\epsilon_r}{k_BT})\rho_A\rho_B \end{aligned} \]

即为Arrhenius Equation


Phenomenological Kinetics

\[ \ce{\nu_AA + \nu_BB -> \nu_YY + \nu_ZZ} \]
\[ \begin{gathered} r = \frac{d\xi}{dt} = -\frac{1}{\nu_A}\frac{dn_A}{dt} = \frac{1}{\nu_Y}\frac{dn_Y}{dt} \\ r = k[\ce{A}]^{m_A}[\ce{B}]^{m_B} \\ \ln r = \ln k + m_A\ln{[\ce{A}]} + m_B\ln{[\ce{B}]} \end{gathered} \]

first/second order reactions ....

Transition State Theory:

  • Reactant are in eq. with the activated complex(AC) or transition state
  • AC converts to product in a irreversible step
\[ \begin{gathered} \ce{A + B <=> [AB]^\ddagger -> P} \\ K_c^\ddagger =\frac{[AB^\ddagger]c^{\circ}}{[A][B]} \end{gathered} \]

at eq \(\mu_A + \mu_B = \mu_{AB^\ddagger}\)

from statistical mechanics: \(Q = q^N / N!\)

\[ \begin{gathered} \mu = -RT(\frac{\partial \ln Q}{\partial N})_{VT} = -RT(\frac{\partial \ln {\frac{q^N}{N!}}}{\partial N})_{VT} = -RT\ln{q/N} \\ \mu^\ddagger = \mu_A + \mu_B \rightarrow \frac{q^\ddagger}{N^\ddagger} = \frac{q_A}{N_A} \frac{q_ B}{N_B}\\ \frac{N^\ddagger}{N_AN_B} = \frac{q^\ddagger}{q_Aq_B} \\ K_c^\ddagger = \frac{\frac{q^\ddagger}{V}·c_0}{\frac{q_A}{V}\frac{q_B}{V}} = \exp(-\frac{\Delta^\ddagger G ^\circ}{RT}) \end{gathered} \]

let \(\nu_c\) be the freq. at which AC cross over the barrier

\[ \begin{gathered} \frac{d[P]}{dt} = \nu_c[AB^\ddagger] = k[A][B] \\ k = \nu_c K_c^\ddagger /c^\circ \end{gathered} \]

Normal mode for the rxn

对于普通分子的三维配分函数:

\[ q_t = \frac{(2\pi mk_BT)^\frac32}{h^3} V \]

对于 AC,只有一维的平动坐标:

\[ q_t^\ddagger = \frac{(2\pi m^\ddagger k_BT)^\frac12}{h} \delta \]

平衡常数

\[ \begin{gathered} K_c^\ddagger = \frac{(2\pi m^\ddagger k_BT)^\frac12}{h} \delta \frac{\frac{q^\ddagger_{other}}{V}·c_0}{\frac{q_A}{V}\frac{q_B}{V}} \\ k = \frac{(2\pi m^\ddagger k_BT)^\frac12}{h} \delta\nu_C \frac{\frac{q^\ddagger_{other}}{V}·c_0}{\frac{q_A}{V}\frac{q_B}{V}} = \frac{(2\pi m^\ddagger k_BT)^\frac12}{h} \left< u_{AC} \right> \frac{\frac{q^\ddagger_{other}}{V}·c_0}{\frac{q_A}{V}\frac{q_B}{V}} \end{gathered} \]

在一维坐标上积分速率得到

\[ \left< u_{AC} \right> = \sqrt{\frac{k_B T}{2\pi m^\ddagger}} \]

代入即可得到:

\[ k = \frac{k_BT}{hc_0} K^\ddagger = \frac{k_BT}{hc_0} e^{-\frac{\Delta G^\ddagger}{RT}} \]

Arrhenius Equation

求导得:

\[ \begin{aligned} \dv{\ln k}{T} &= \frac 1T + \dv{\ln K_C^\ddagger}{T} \\ &= \frac 1T + \dv{T}(\frac{\Delta G^\ddagger}{RT}) = \frac 1T + \frac{\Delta U^\ddagger}{RT^2} \\ &= \frac 1T + \frac{\Delta H^\ddagger + RT}{RT^2} = \frac{\Delta H^\ddagger + 2RT}{RT^2} \end{aligned} \]

由此即可得:

\[ E_a = \Delta H^\ddagger + 2RT \]

Chapter 4: Chemical Kinetics (II)

Potential Energy Surface

image-20250930153118930

the top point of the surface is called Saddle Point

at local minimum:

\[ \frac{\partial^2u}{\partial x^2} > 0, k>0, \nu = \sqrt{\frac{\mu}{k}} \text{ is real} \]

at local maximum:

\[ \frac{\partial^2u}{\partial x^2} < 0, k<0, \nu = \sqrt{\frac{\mu}{k}} \text{ is imaginary} \]

KIE

Primary KIE

Zero Point Energy: \(E_0 = \frac 12 h\nu\) for ground state

Harmonic Approx.: \(\displaystyle{\nu = \frac 1{2\pi}\sqrt{\frac k\mu}}, \tilde{v} = \frac 1{2\pi c}\sqrt{\frac k\mu}\)

\[ \frac {\nu_{CH}}{\nu_{CD}} = \sqrt{\frac{m_Dm_C(m_D+m_C)}{m_Hm_C(m_H+m_C)}} \approx \sqrt2 \]

image-20250930154307649

\[ \begin{aligned} \ln(\frac{k'_{CH}}{k'_{CD}}) &= \ln{\frac {A_H}{A_D}} + \frac12 \frac{h(\nu_H-\nu_D)}{k_BT}\\ \frac{k'_{CH}}{k'_{CD}} &= \exp({\frac12 \frac{h(\nu_H-\nu_D)}{k_BT}}) \approx 1\sim10 \end{aligned} \]

Secondary KIE

image-20250930155034421

KIE: \(S_N1\) ~ 1.2, \(S_N2\) ~ 1. why?

\(S_N1\) mechanism involves a temporary increase in the bond order of C-H(D)


Early vs. Late TS

image-20250930155358406

  • Early TS: solvent interacts with IS&TS similarly ⇒ No solvent effect

  • Later TS: solvent interacts with IS&TS differently ⇒ expect solvent effects


Postulates based on TST

Bronsted-Evans-Polanyi principle (BEP)

for a series of similar reactions:

\[ \Delta G_1^\ddagger - \Delta G_2^\ddagger = \alpha(\Delta G_1-\Delta G_2) \]

or

\[ \ln(k_2/k_1) = \alpha\ln(K_2/K_1) \]

where \(0<\alpha<1\)

The Hammond Postulate

image-20250930161619872

more reactive rxn will produce AC more resembles the reactant, result in less selectivity (Activity-Selectivity Principle)

The Curtin-Hammett Principle

image-20250930161911577

The ratio of products is determined by the relative heights of the highest energy barriers, leading to different products

Microscopic Reversibility

image-20250930162025756

The forward and reverse rxns go identical path

Kinetic vs Thermodynamic Control

image-20250930162821962

Quasi Steady Approx. (QSSA)

Key assumptions:

  • Concentrations of intermediates are low (why)

  • Variations of concentrations of intermediates with time are negligible.

consider rxn:

\[ \ce{A ->[k_1] B ->[k_2] C} \]

we have:

\[ \begin{gathered} \frac{dx}{dt} = -k_1x \quad \frac{dy}{dt} = k_1x-k_2y \quad \frac{dz}{dt} = k_2y \\ \Rightarrow y = \frac{k_1}{k_2 - k_1}(e^{-k_1t} - e^{-k_2t}) \\ \frac{dy}{dt} = 0 \Rightarrow t_{max} = \frac 1{k_2-k_1}\ln{\frac {k_2}{k_1}} \\ y_{max} = \frac {k_1}{k_2-k_1}[(\frac {k_2}{k_1})^{\frac {k_1}{k_2-k_1}} - (\frac {k_2}{k_1})^{\frac {k_2}{k_2-k_1}}] \end{gathered} \]

as \(k_2\gg k_1 \Rightarrow t_{max} \to 0, y_{max} \to 0\)

QSSA

for rxns with more than one intermediates:

\[ \ce{A->[k_1]I_1 ->[k_2]I_2->...->I_n->[k_{n+1}]B} \]

all \(\ce{I_n}\) can consider into one steady state.

Pseudo-Equilibrium/ Rate limiting step

If one step has a significantly lower rate constant, then it is considered as RLS

Several steps in a row sequence could have low but comparable rate constants ⇒ kinetically relevant not RLS/RDS.

Surface Mediate rxns

转换频率(Turnover freq.

\[ TOF = \frac {r}{[L]} \]

Most Abundant Reaction Intermediate (MARI):

\[ \theta_i \sim 1 \]

Chapter 5: Chemical Kinetics II

RDS

image-20251014152551774

let $k_{-2} =0 $

$$ \begin{aligned} \frac{d[I]}{dt} = 0 &= k_1[R] - k_{-1}[I] - k_2 [I] + k_{-2}[P] \ &= A\exp(-\frac{\Delta G_1^\ddagger}{RT}) [R] - A\exp-\frac{\Delta G_1^\ddagger+\Delta G_1}{RT} - A\exp-\frac{\Delta G_2^\ddagger}{RT}

\end{aligned} $$

when $\Delta G_1^\ddagger + \Delta G_1 \ll \Delta G_2^\ddagger $ :

\[ \begin{gathered} \exp(-\frac{\Delta G_1^\ddagger}{RT}) [R] - \exp[-\frac{\Delta G_1^\ddagger+\Delta G_1}{RT}](I) = 0 \\ [R] = \exp[-\frac{\Delta G_1}{RT}](I)\\ r = k_2[I] = A\exp(-\frac{\Delta G_2^\ddagger}{RT})\exp[\frac{\Delta G_1}{RT}](R) \\ = A\exp[-\frac{\Delta G_2^\ddagger - \Delta G_1}{RT}](R) \end{gathered} \]

Only the highest barrier determines the rate.


Degree of Rate Control (DRC)

define the DRC of elementary step i :

\[ X_{RC,i} = \frac{k_i}{r}(\frac{\partial r}{\partial k_i})_{k_{j \neq i}, K_i} = (\frac{\partial \ln r}{\partial \ln k_i})_{k_{j \neq i}, K_i} \]

for RDS on step i :

\[ X_{RC,i} = 1, \quad X_{RC, j\neq i} = 0 \]

from TST :

$$ \begin{aligned} X_{RC,i} &= (\frac{\partial \ln r}{\partial \ln k_i}){k \ &= (\frac{\partial \ln r}{\partial \ln (\frac{k_BT}{h} \exp(\frac{-\Delta G_i^\ddagger}{RT}))})}, K_i{k \ &= (\frac{\partial \ln r}{\partial (\frac{-\Delta G_i^\ddagger}{RT})})}, K_i{k}, K_i

\end{aligned} $$

we can also define Degreee of thermodynamic controlled

\[ \begin{aligned} X_{TC,i} &= (\frac{\partial \ln r}{\partial (\frac{-\Delta G_i}{RT})})_{k_{j \neq i}, K_i} \end{aligned} \]

image-20251014161145290

for eg:

$$ \begin{gathered} \ce{A + \ast <--> A\ast} &K_1 \ \ce{B + \ast <--> B\ast} &K_2 \ \ce{A\ast + B\ast -> AB\ast + \ast} &RDS, k_3\ \ce{AB\ast <--> AB + \ast}

\end{gathered} $$

\[ K_1 = \frac{\theta_A}{P_A \cdot \theta_*} \quad K_2 = \frac{\theta_B}{P_B \cdot \theta_B} \]
\[ \theta_A + \theta_B + \theta_* = 1 \]

A MARI 物种: [ \theta_* = \frac{1}{P_A K_1} \quad \theta_B = \frac{K_2 P_B}{K_1 P_A} ]

\[ \tau = k_3 \theta_A \theta_B = \frac{k_3 K_2}{K_1} \frac{P_B}{P_A}= \frac{k_B T}{h} \exp \left[ -\frac{\Delta^\ddagger G_3^0 + \Delta G_2^0 - \Delta G_1^0}{RT} \right] \frac{P_B}{P_A} \]
\[ = \frac{k_B T}{h} \exp \left[ -\frac{\neq G_3^0 - \Delta G_1^0 - \Delta G_2^0 + \Delta G_2^0 - \Delta G_1^0}{RT} \right] \frac{P_B}{P_A} \]
\[ = \frac{k_B T}{h} \exp \left[ -\frac{\neq G_3^0 - 2G_A^0}{RT} \right] \frac{P_B}{P_A} \]

可得 \(X_{A,RC} = -2\),为毒化剂作用

\(X_{\ddagger,RC} = 1\) 意味着 RDS 控制反应速率


Enzymatic Catalysis

Michaelis Manton kinetics

\[ r = \frac{r_{max}[S]}{K_m + [S]} \]

undefined

Reaction with 2 substates:

\[ \begin{gathered} E+S_1 \rightleftharpoons ES_1 &K_1\\ E+S_2 \rightleftharpoons ES_2 &K_2\\ ES_1+S_2 \rightleftharpoons ES_1S_2 &K_3\\ ES_2+S_1 \rightleftharpoons ES_1S_2 &K_4\\ ES_1S_2 \rightarrow E+P &K_5\\ K_1 = \frac{[E][S_1]}{[ES_1]} \quad K_2 = \frac{[E][S_2]}{[ES_2]} \\ K_3 = \frac{[ES_1][S_2]}{[ES_1S_2]} \quad K_4 = \frac{[ES_2][S_1]}{[ES_1S_2]} \end{gathered} \]

solve :

\[ r = \frac{k[E_0]}{1+\frac{k_4}{[S_0]} + \frac{k_3}{[S_2]} + \frac{k_2k_4 + k_2k_3}{[S_1][S_2]}} \]

Assuming \([S_2]\) is large :

\[ r = \frac{\frac{k[E_0][S_2]}{[S_2]+K_3} \cdot [S_1]}{\frac{K_1K_3 + K_4[S_2]}{[S_2]+K_3}+[S_1]} = \frac{k[E_0][S_1]}{K_4 + [S_1]} \]

Kinetics in thermal dynamically non-ideal systems

image-20251014164815896

\[ \ce{A + B <--> X^\ddagger -> P} \]

应用艾琳方程:

\[ r = \frac{k_BT}{h}c_x^\ddagger = \frac{k_BT}{h}k^\ddagger \frac{\gamma_A \gamma_B}{\gamma^\ddagger} c_Ac_B \]

we have Broused-Bjerrum relation

\[ k = k_1\frac{\gamma_A \gamma_B}{\gamma^\ddagger} \]

Reaction is dilute electrolytes

\[ \lg \frac{k}{k_0} = -cZ_A^2\sqrt{I}-cZ_B^2\sqrt{I}+c(Z_A+Z_B)^2\sqrt{I} = 2cZ_AZ_B\sqrt{I} \]

if \(Z_A\) or \(Z_B = 0\)\(k = k_0\)

环己烯的氢气加成

on Pt:

H₂(g) ⇌ H₂(l)          // 溶解
H₂(l) ⇌ H₂(p)          // p: 物理吸附于表面
H₂(p) + ** → 2H* (k₃)  // **RDS:氢分子解离**
\[ \begin{aligned} r &= \frac{k_BT}{h} k^\ddagger \frac{\gamma_{H2}^p}{\gamma^\ddagger} c_{H2}^p \\ &= \frac{k_BT}{h} K_Hk^\ddagger \frac{\gamma_{H2}^l}{\gamma^\ddagger} c_{H2}^l \end{aligned} \]

由于放热步骤,可认为过渡态和 H2 活度系数相近。于是 \(r \propto K_H c^l_{H2}\) 依赖于溶剂。

on Pd:

H₂(g) ⇌ H₂(l) ⇌ H₂(p) ⇌ 2H* (快速平衡)
RH* + H* ⇌ X^\neq → RH₂** (k₆ₐ, **RDS:表面加氢**)
\[ \begin{aligned} r &= \frac{k_BT}{h} k^\ddagger \frac{\gamma_{RH*}c_{RH*}\gamma_{H*}c_{H*}}{\gamma^\ddagger} \\ &= L\frac{k_BT}{h} k^\ddagger \frac{\gamma_{RH*}}{\gamma^\ddagger}\sqrt{K_H^1p_{H2}a_{**}} \end{aligned} \]

RH MARI 物种,其物理状态受金属表面作用支配而与溶剂无关。


补偿效应

  • 分解反应活化熵增加而活化焓也增加
  • 缩合反应活化熵减小而活化焓也减小

焓熵相互补偿,导致 \(k\) 变化不大。考虑水合:

image-20251104032636742


反应器

间歇式反应器 Batch

  • 系统类型封闭系统
  • 混合方式:投料时瞬间混合,反应过程中无混合
  • 浓度特征:所有组分的浓度随时间不断变化。不存在真正的稳态。
  • 应用:常用于小批量、多品种的生产,如制药、精细化工。

连续搅拌釜式反应器 Continuously stirred tank reactor

  • 系统类型开放系统
  • 混合方式瞬间、全混。进料一进入 CSTR,其组成立即与釜内及出口物料完全相同。
  • 浓度特征:釜内各处浓度均匀,且不随时间变化(稳态),但等于出口的低浓度
  • 应用:适用于对返混要求不高的反应,易于控制温度和连续操作。

活塞流反应器l Pug-flow reaction

  • 系统类型开放系统
  • 混合方式:在垂直于流动的方向上无混合;在沿流动的方向上无混合。流体像“活塞”一样向前推进。
  • 浓度特征:反应物浓度沿反应器长度方向逐渐降低。在任一特定截面上,组成是均匀的。
  • 应用:适用于要求高转化率的反应,因为它避免了返混导致的效率下降,是工业上最常用的反应器类型之一。

Chapter 6 Electrode Kinetics

Electro Kinetics

image-20251104033850634

理想可极化电极:不允许电子通过,只能积累电荷,电极本身不发生电化学反应,如惰性电极

理想不可极化电极:允许电子通过,反应快且电位基本不变,如参比电极

实际存在过电位:

\[ \eta = E - E_{eq} \]

image-20251104034226193

Semi-empirical Steady-State Treatment

扩散层:假定电极附近有一段无法搅拌的,厚度为 \(\delta\) 的停滞层(stagnant layer,其浓度是线性减小的:

image-20251104034605236

\[ v_{mt} = D_O (\dv{C_O}{x})_{x=0} = D_O \frac{C_O^b - C_O}{\delta_O} = m_O(C_O^b - C_O) \]

where \(m = D / \delta\) stands for 质量传递系数(mass transfer coef.). 若认为单位时间的扩散通量可用电流表示:

\[ \frac{i}{nFA} = m_O(C_O^b - C_O) = m_R(C_R - C_R^b) \]

\(C_O = 0\) 时达到极限电流:

\[ i_l = nFAm_OC_O^b, \quad \frac{C_O}{C_b} = 1-\frac{i}{i_l}, \quad E = E^{\circ\prime} + \frac{RT}{nF}\ln\frac{i_l-i}{i_l} \]

if R initially absent:

\[ \begin{gathered} C^b_R = 0, C_R = \frac{i}{nAFm_R} \\ C_O = (1-\frac{i}{i_l})\frac{i_l}{nAFm_O} \\ E = E^{\circ\prime} - \frac{RT}{nF} \ln \frac{m_O}{m_R} + \frac{RT}{nF} \ln \frac{i_l - i}{i_l} \end{gathered} \]

令半波电位 \(i = i_l/2\)

\[ E_{1/2} = E^{\circ\prime} - \frac{RT}{nF} \ln \frac{m_O}{m_R} \]

可反映相对扩散速率

id R is isolable:

\[ \begin{gathered} a_R = 1 \\ E = E^{\circ\prime} + \frac{RT}{nF}\ln C_O = E^{\circ\prime} + \frac{RT}{nF}\ln\frac{i_l-i}{i_l} + \frac{RT}{nF}\ln{C_O^b} \end{gathered} \]

when i=0, \(C_O = C_O^b\):

\[ E_eq = E^{\circ\prime} +\frac{RT}{nF}\ln{C_O^b} \]

于是过电位:

\[ \eta = |E-E_{eq}| = |\frac{RT}{nF}\ln\frac{i_l-i}{i_l}| \]

image-20251104041851343

image-20251104042004713

Electrode kinetics

Tafel Equation:

\[ \eta = a+b\log i \]

b:Tafel 斜率 (mV/dec),表示电流增一数量级所需的电位变化

Bulter-Volmer Kinetics


Chapter 5: Phase Diagrams

Liquid-Solid diagram


Canonical ensemble 正则系综

define

\[ \alpha = -\frac{\mu}{kT}, \beta = \frac 1{kT} \]

we have mixing entropy( 用概率代替浓度 ):

\[ S = -k\sum_I f_i\ln f_i \]

and two condtrains:

\[ \begin{cases} \sum_i f_i = 1 \\ \sum_i f_i E_i = U \end{cases} \]

when reaching maximum entropy, we can derive: 他妈了隔壁的我不会推导

\[ f_i = \frac{e^{-\beta E_i}}{\sum_ie^{-\beta E_i}} = \frac{e^{-\beta E_i}}{Z(V,T,N)} \]

where \(Z(V,T,N)\) 正则配分函数

在这里用离散和是不精确的,我们改成积分形式。by using H, for single partical:

\[ Z = \frac{1}{h^3} = \int e^{-\beta H(\vec x,\vec p)} d^3\vec x d^3\vec p \]

and for many partials:

\[ Z = \frac{1}{h^{3N}} \int \prod_{i=1}^{N} e^{-\beta H(\vec x_i , \vec p_i)} d^{3N}\vec x_i d^{3N} \vec p_i \]

if particals are 全同:

\[ Z = \frac{1}{N!h^{3N}} \int \prod_{i=1}^{N} e^{-\beta H(\vec x_i , \vec p_i)} d^{3N}\vec x_i d^{3N} \vec p_i \]

这些即认为最小的单位空间是 \(\frac 1h\),把 N 个粒子分配到这些空间里。

通过配分函数计算能量的期望值:

\[ \begin{aligned} \left< Z \right> = \sum_i E_iP_i &= \frac1Z \sum_i E_ie^{-\beta E_i}\\ &= -\frac1Z \frac{\partial}{\partial\beta} Z(\beta, E_i) \\ &= -\frac{\partial \ln Z}{\partial \beta} = kT^2\frac{\partial \ln Z}{\partial T} \end{aligned} \]

进而还可得出自由能的关系,我们有:

\[ \begin{gathered} S = -k\sum f_i \ln f_i = -\frac kZ\sum (-\beta E_i - \ln Z)e^{-\beta E_i} = k(\ln Z + \beta\left< E \right>) \\ \left< E \right> = U \\ F = U-TS = -kT\ln Z \end{gathered} \]

巨配分函数 \(\Xi\)

\[ \Xi(\mu, V,T) = \sum_{N=0}^\infty Z(N,V,T) \lambda^N = 1+\sum_{N=1}^\infty Z(N,V,T) \lambda^N \]

where \(\lambda = e^{\beta\mu}\) represent absolute acivity(绝对活度)

Comments